

Human Abuse Potential of Intravenous Serdexmethylphenidate (SDX), a Novel Prodrug of d-Methylphenidate, in Recreational Stimulant Abusers

Rene Braeckman¹, Sven Guenther¹, Travis C. Mickle¹, Andrew C. Barrett¹, Adam Smith¹, Debra Kelsh², Bradley Vince² ¹ KemPharm, Inc., Coralville, IA; ² Vince & Associates/Altasciences, Overland Park, KS

BACKGROUND

- Serdexmethylphenidate (SDX) is a prodrug of d-methylphenidate (d-MPH) currently being developed as the major pharmaceutical ingredient in an investigational product for the treatment of ADHD
- When taken orally as intended, SDX produces a gradual onset and extended duration of d-MPH exposure that is imparted by the gradual conversion of the prodrug to active d-MPH (Braeckman 2018)
- Currently available prescription stimulant products containing MPH or amphetamine are Schedule II controlled substances due to their high abuse potential, as evidenced by preclinical and clinical studies (Nielsen 1984; de la Garza 1987; Kollins 2001), and epidemiological findings (Cassidy 2015; McCabe 2017, Burtner 2017)
- Prescription stimulant abusers commonly manipulate oral dosage forms to facilitate non-oral routes of administration (e.g., intranasal, intravenous [IV]) that are associated with a rapid and intense "high" (Cassidy 2015; Burtner 2017) and, in turn, chronic abuse and dependence
- Chronic abuse of stimulants, particularly via non-oral routes, can lead to a constellation of health-related problems including cardiovascular and cerebrovascular toxicity, increased likelihood of seizures, increased risk of acquiring blood-borne infections, malnutrition, and miscarriage in pregnant women (Riezzo 2012; Vearrier 2012)
- A comprehensive evaluation of abuse potential is therefore critical for understanding the risk-benefit profile of novel stimulant-like drugs such as SDX

OBJECTIVES

• To assess the human abuse potential of SDX after a single IV injection and to assess the pharmacokinetics of intact SDX and SDX-derived d-MPH following IV injection

METHODS

Study design and subjects

- This was a Phase 1, double blind, single dose, 3 treatment, randomized crossover study of IV administration of SDX API compared with d-MPH HCI API in recreational stimulant users
- Part A (Cohort 1) consisted of a dose escalation phase that determined the optimal IV d-MPH HCI API dose to be used in Part B, based on pharmacodynamic and safety assessments
- In Part B (Cohort 2), subjects who were able to discriminate the optimal dose of IV d-MPH HCI API from placebo were randomized to receive all 3 of the following IV treatments in a randomized, 3-period, crossover design separated by a minimum 72-hour washout period:
 - **Treatment A:** SDX API 30 mg, IV (equivalent to d-MPH HCI, 15 mg, with respect to molar d-MPH)
 - **Treatment B:** d-MPH HCI API 15 mg, IV
- **Treatment C:** Matching placebo, IV
- Subjects were recreational stimulant users between 18 and 50 years of age with ≥ 10 lifetime experiences with any stimulant
- Subjects must also have:
 - used stimulants for non-therapeutic purposes ≥ 5 times within the prior 6 months
 - used cocaine within the prior 6 months
 - had experience with stimulants via a non-oral route of administration
- Written informed consent was obtained. The study protocol was approved by an Institutional Review Board

Pharmacokinetic Assessments and Analyses

- Blood samples were collected for measurement of plasma concentrations of SDX, d-methylphenidate (d-MPH), l-methylphenidate (l-MPH), and ritalinic acid at pre-dose, at 5 minutes, and at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, and 36 hours post-dose
- Primary PK endpoints were maximum plasma concentration (C_{max}), time to C_{max} (T_{max}), mean systemic exposure (AUC_{0-last}), and mean total systemic exposure (AUC_{0-inf}) (d-MPH only)

Pharmacodynamic Assessments and Analyses

At-the-moment, visual analog scale (VAS) assessments were performed at 2 (Drug Liking only) and 5 minutes, and at 0.25, 0.5, 1, 1.5, 2, 3, 4, 6 and 8 hours post dose, and included:

- Drug Liking ("At this moment, my liking for the drug is?"), assessed on a bipolar, 0-100 point scale, with 0=strong disliking, 50=neither like nor dislike, and 100=strong liking
- Feeling High ("At this moment, I am feeling high"), assessed on a unipolar, 0-100 point scale, with 0=not at all and 100=extremely
- Good Effects ("At this moment, I can feel good drug effects"), assessed on a unipolar, 0-100 point scale, with 0=definitely not and 100=definitely yes
- Retrospective VAS assessments, performed 12 and 24 hours postdose, included: - <u>Take Drug Again</u> ("I would take this drug again"), assessed on a unipolar, 0-100 point scale, with 0=definitely not and 100=definitely yes
- Pharmacodynamic analyses were performed on the Completers Population, with LS mean or median (as appropriate) differences and associated CIs calculated for each pairwise comparison between treatments
- The primary and key secondary endpoints, Drug Liking E_{max} and Take Drug Again E_{max}, respectively, were conducted as one-sided, superiority-type hypothesis tests at a significance level of α =0.05 and reported with 95% confidence intervals (CIs), with margins (δ) defined as shown below:

Comparison	Null hypothesis (H ₀) (No difference)	Alternative hypothesis (H _a) (Significantly different)
-MPH API (B) to Placebo (C)	μ _B – μ _C ≤ 15 (δ1)	μ _B – μ _C > 15 (δ1)
-MPH API (B) to SDX (A)	μ _B – μ _A ≤ 10 (δ2)	μ _B – μ _A > 10 (δ2)
DX (A) to Placebo (C)	μ _A – μ _C ≥ 11 (δ3)	μ _A – μ _C < 11 (δ3)

- Other secondary endpoints were performed as two-sided, confirmatory hypothesis tests at a significance level of α =0.05 and reported with 95% CIs, with the exception of SDX vs. placebo, which were performed as two-sided hypothesis tests at a significance level of α =0.10 and reported with 90% CI
- Endpoints that were not normally distributed and non-symmetric were analyzed using non-parametric methods

Safety

• Assessment included incidence adverse events (AEs), physical examination findings, vital signs, electrocardiogram (ECG) parameters, and clinical laboratory tests.

RESULTS

Subject Disposition and Demographics

• A total of 30 subjects (mean age=32, 80% male) completed all 3 treatment periods and thus comprise the Completer Population

Pharmacokinetics

• Figure 1 shows plasma d-MPH concentrations derived from IV SDX and d-MPH HCI Peak (C_{max}) and overall (AUC_{inf}) d-MPH exposure were approximately 21.5% and 12.7% of the exposure observed with d-MPH HCI.

Figure 1. d-MPH concentrations following IV administration of SDX and d-MPH HCI

Pharmacodynamics

 d-MPH HCI produced rapid increases in Drug Liking, with E_{max} scores significantly higher than placebo (LS mean difference [95% CI] = 30.5 [25.9, ∞], p<0.001), thus confirming study validity (**Figure 2**)

SDX produced little or no increases in Drug Liking scores throughout the testing interval, with E_{max} scores significantly lower than for d-MPH HCI (median difference $[95\% \text{ CI}] = 29.0 [22.5, \infty]$, p=0.001) and non-inferior to placebo (median difference) $[95\% \text{ CI}] = 0.5 [-\infty, 5.5], p=0.001)$ (Figure 2)

Figure 2. Drug Liking VAS scores over time (left panel) and Drug Liking E_{max} scores (right panel) for IV SDX, d-MPH HCI, and placebo

* significantly non-inferior to placebo (p=0.001), † significantly higher vs. SDX (p=0.001), ‡ significantly higher vs. placebo (p<0.001)

- Time-dependent VAS scores for Feeling High (Figure 3) and Good Effects (data not shown) resembled that for Drug Liking, with d-MPH HCI producing rapid increases in pharmacodynamic effects and SDX producing effects that were generally comparable to placebo
- **Figure 4** shows E_{max} scores for these endpoints and for the retrospective endpoint of Take Drug Again (key secondary endpoint)

• Feeling High VAS scores over time for IV SDX, d-MPH HCI, and Figure placebo

Take Drug Again: ⁺ significantly higher vs. SDX (p<0.001), [‡] significantly higher vs. placebo (p<0.001) Feeling High: * statistically similar to placebo (p=0.655), * significantly higher vs. SDX (p<0.001), [‡] significantly higher vs. placebo (p<0.001) Good Effects: * statistically similar to placebo (p=0.789), † significantly higher vs. SDX (p<0.001), [‡] significantly higher vs. placebo (p<0.001)

Tolerability and Safety

- **Table 2**, showing the most common AEs during the Treatment Phase, indicates that AEs typical of stimulants (euphoric mood, hypervigilance, heart rate increased) were more common during d-MPH HCI vs. SDX treatment
- There were no clinically significant clinical laboratory values, ECG results, or out-of-range vital signs following IV SDX

Table 2. Adverse Events Occurring in ≥5% of Subjects in the Treatment Phase of Part B (Safety Population)

MedDRA System Organ Class Preferred Term	SDX (N=31)	d-MPH HCI (N=30)	Placebo (N=31)	
Cardiac disorders				
Palpitations	0 (0.0)	2 (6.7)	0 (0.0)	
Sinus tachycardia	0 (0.0)	4 (13.3)	0 (0.0)	
Tachycardia	0 (0.0)	4 (13.3)	0 (0.0)	
Gastrointestinal disorders				
Dry mouth	0 (0.0)	6 (20.0)	0 (0.0)	
Nausea	0 (0.0)	3 (10.0)	0 (0.0)	
General disorders and administration site conditions				
Energy increased	2 (6.5)	1 (3.3)	1 (3.2)	
Feeling abnormal	1 (3.2)	2 (6.7)	0 (0.0)	
Feeling hot	2 (6.5)	6 (20.0)	2 (6.5)	
Feeling jittery	0 (0.0)	2 (6.7)	0 (0.0)	
Feeling of relaxation	0 (0.0)	1 (3.3)	2 (6.5)	
Investigations				
Heart rate increased	0 (0.0)	5 (16.7)	0 (0.0)	
Nervous system disorders				
Headache	1 (3.2)	1 (3.3)	2 (6.5)	
Paraesthesia	0(0.0)	2 (6.7)	1 (3.2)	
Somnolence	1 (3.2)	4 (13.3)	(0.0)	
Psychiatric disorders				
Change in sustained attention	0 (0.0)	2 (6.7)	0 (0.0)	
Euphoric mood	4 (12.9)	17 (56.7)	2 (6.5)	
Hypervigilance	4 (12.9)	10 (33.3)	2 (6.5)	
Skin and subcutaneous tissue disorders				
Hyperhidrosis	1 (3.2)	4 (13.3)	0 (0.0)	

CONCLUSIONS

- IV administration of the SDX yielded minimal exposure to d-MPH
- Consistent with these findings, IV SDX produced effects that were statistically similar to IV placebo on multiple abuse-related endpoints
- The performance of SDX following IV administration appears to confirm the rational chemical design of the prodrug and suggests that SDX, as a prodrug of d-MPH, is unlikely to be attractive for intravenous abuse

Disclosures

RB, SG, TCM, ACB, and AS are employees and shareholders of KemPharm, Inc. BS and DK are employees of Vince & Associates. This study was funded by KemPharm, Inc., Coralville, IA, USA. Design support was provided by Research Triangle Graphics, LLC.

References

Braeckman R et al. Poster presentation at American Professional Society for ADHD and Related Disorders, January 12th-14th, 2018, Washington, DC.

Burtner J et al. Poster presentation at the American Psychiatric Association 2017 Annual Meeting, May 20th-24th, 2017, San Diego, CA.

Cassidy TA et al. *J Atten Disord*. 2015b;19(4):275-83. de la Garza R et al. J Pharmacol Exp Ther. 1987;243(3):955-62.

de Wit H et al. Psychopharmacology (Berl). 1992;107(2-3):352-8.

Kollins SH et al. *Pharmacol Biochem Behav*. 2001;68(3):611-27.

McCabe SE et al. J Am Acad Child Adolesc Psychiatry. 2017 Mar;56(3):226-233.

Nielsen JA et al. *Pharmacol Biochem Behav*. 1984;20(2):227-32.

Riezzo I et al. *Curr Med Chem*. 2012;19(33):5624-5646.

Vearrier D et al. *Dis Mon*. 2012; 58:38–89.